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Abstract

Heat transport in highly turbulent convection is not well understood. In this paper, we simulate compressible convec-
tion in a box of aspect ratio 4 using computationally-efficient MacCormack-TVD finite difference method on single
and multi-GPUs, and reach very high Rayleigh number (Ra)— 1015 in two dimensions and 1011 in three dimensions.
We show that the Nusselt number Nu ∝ Ra0.3 (classical scaling) that differs strongly from the ultimate-regime scal-
ing, which is Nu ∝ Ra1/2. The bulk temperature drops adiabatically along the vertical even for high Ra, which is in
contrast to the constant bulk temperature in Rayleigh-Bénard convection (RBC). Unlike RBC, the density decreases
with height. In addition, the vertical pressure-gradient (−dp/dz) nearly matches the buoyancy term (ρg). But, the
difference, −dp/dz − ρg, is equal to the nonlinear term that leads to Reynolds number Re ∝ Ra1/2.
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1. Introduction

Turbulent thermal convection occurs in a wide range
of geophysical and astrophysical flows, as well as in
many natural and industrial processes [1, 2, 3, 4, 5, 6,
7, 8]. There are various models of turbulent convec-
tion, the leading one being Rayleigh-Bénard convection
(RBC) [1, 2, 3, 4, 5] that follows Oberbeck-Boussinesq
(OB) approximation. In RBC, a horizontal layer of fluid
confined between two parallel plates is heated from be-
low and cooled from above. In the OB approxima-
tion, the density of the fluid is nearly constant, except
for a small variation in the buoyancy term. For ex-
ample, for water, whose thermal expansion coefficient
α ≈ 3 × 10−4 K−1 at room temperature, the relative
change in density (δρ)/ρ ≈ α(∆T ) ≈ 10−3 when the
temperature difference between the two plates is around
30 K [5].

However, (δρ)/ρ in a turbulent star is of the order of
unity [9]. Let us assume that the star is made of ideal
gas, whose thermal expansion coefficient is 1/T , where
T is the gas temperature. Hence, (δρ)/ρ ≈ α(∆T ) ≈ 1
when (∆T ) ≈ T . Therefore, the OB approximation and
the RBC equations become invalid for stars and related
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astrophysical systems [6, 10, 11, 12]. To study such sys-
tems, researchers often employ equations for compress-
ible convection or intermediate models that employ
non-Oberbeck-Boussinesq (NOB) effects [13, 14, 15]
or anelastic approximations [16, 17]. In this paper, we
employ fully compressible equations to study turbulent
convection at very large Rayleigh numbers (Ra)—up
to 1015 for two-dimensions (2D), and 1011 for three-
dimension (3D). Note, however, that the solar convec-
tion has even larger Ra (∼ 1024) than the above [6].

Many aspects of turbulent convection, which is more
complex than hydrodynamic turbulence, are understood
quite well, in particular for RBC systems. Grossmann
and Lohse (GL in short) [18, 19] modelled the Reynolds
number (Re) and Nusselt number (Nu) scaling using
the relations for viscous and thermal dissipation rates
[20, 21]. The GL relations have been verified by many
experiments and numerical simulations [22]. Recently,
Bhattacharya and Verma [23] employed machine learn-
ing, artificial intelligence, and more accurate dissipa-
tion rates for Ra and Pr predictions. In addition, it has
been shown that for small and moderate Prandtl num-
bers (Pr ⪅ 1), turbulent convection has properties simi-
lar to hydrodynamic turbulence [5, 24]. For example,
the energy spectrum for turbulent convection follows
Kolmogorov’s 5/3 spectrum.

For the RBC setup, while the Reynolds number scal-
ing is reasonably well established, the properties of ve-
locity fluctuations remains to be quantified [25]. Addi-
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tionally, accurate characterization of the Nusselt num-
ber scaling remains a challenge. Two main theories de-
scribe the dependence of Nu on Ra. In the extreme tur-
bulent regime, known as ultimate regime, Kraichnan ar-
gued that Nu scales as Ra1/2 [26, 27]. On the contrary,
Malkus [28] proposed that Nu is proportional to Ra1/3,
referred to as the classical scaling [1, 2, 3, 4, 18, 27].
It is reported both in experiments and numerical simu-
lations that up to Ra = 1012, the Nu scaling exponent is
near 0.30. However, Chavanne et al. [29], He et al. [30],
Zhu et al. [31] and some others argued that the Nu expo-
nent gradually increases to about 0.38 near Ra = 1015.
Therefore, some researchers believe that the exponent
might reach the value 1/2 at extreme Ra’s [27]. But,
some others, based on different experiments and related
simulations, argue that the classical scaling will remain
valid for all Ra’s [6, 32, 33, 34]. The scaling of Nu is
discussed in detail in recent articles [27, 35].

Turbulent compressible convection behaves very dif-
ferently than RBC turbulence [36]. Unlike the constant
bulk temperature in RBC, the bulk temperature in com-
pressible convection falls adiabatically [17]. In com-
pressible convection, the fluid at the bottom is heavier
than that at the top, which is in sharp contrast to that in
RBC. Unfortunately, compressible convection has not
been studied extensively. In recent times, Verhoeven
et al. [17], and John and Schumacher [36, 37, 38] an-
alyzed turbulent compressible convection. Verhoeven et
al. [17] performed a comparative study of the anelastic
approximation and fully compressible turbulent convec-
tion. John and Schumacher [36, 37] performed numer-
ical simulations of fully compressible convection up to
Ra = 107 and explored different regimes of compress-
ible convection. Some compressible simulations use
inviscid flows [39] whose Ra estimates are somewhat
uncertain. We find that there are no existing studies
on fully compressible convection at very high Rayleigh
numbers. The present paper aims to fill this gap.

In this paper, we simulate turbulent compress-
ible convection using a computationally-efficient
MacCormack-TVD (total variation diminishing) finite
difference method that eliminates numerical oscilla-
tions [40]. Our method is an extension of the novel
and stable numerical scheme proposed by Ouyang et
al. [40], Yee [41], and Liang et al. [42] for shallow
water equations to compressible turbulent convection.
Our stable numerical scheme enabled us to perform
convection simulations at very large Ra’s, e.g., 1015 for
2D flows, and 1011 for 3D flows.

We quantify various quantities using the data gener-
ated by our numerical simulations. Our numerical data
show that the internal energy dominates the fluid kinetic

energy even at very large Ra. We attribute adiabaticity
to this effect. In addition, we study the superadiabatic
temperature and density of the flow. Based on numer-
ical data, we report that Nu ∼ Ra0.3 up to Ra = 1015

in 2D and up to 1011 in 3D. We caution that our re-
sults differ significantly from those for RBC, which is
very different from compressible convection. Among
the two, compressible equations model the astrophysi-
cal systems better.

Simulations of 3D turbulent convection at extreme
Ra’s are very expensive. Fortunately, in the RBC frame-
work, the scaling of Nu and Re for 2D and 3D flows are
reasonably similar for Pr ⪆ 1 [43, 44, 45]. Motivated
by these observations, we examine the Nu and Re scal-
ing for extreme Ra in 2D, and for moderate Ra in 3D.
We believe that these important findings will improve
the models of stellar and planetary convection.

We have organised the paper as follows. In Sec. 2, we
describe the physical system along with the governing
equations. Sec. 3 discusses the numerical scheme
along with the simulation parameters. In Secs. 4 and 5,
we describe the adiabaticity and boundary layers in
turbulent convection. Section 6 contains discussions on
Nu and Re scaling. We conclude in Sec. 7.

2. Physical System and Governing Equations

We consider a fully compressible fluid confined in a
rectangular box of dimension (L, L, d) in 3D and (L, d)
in 2D, with the bottom and top plates at temperatures
Tb and Tt respectively (Tb > Tt). Note that the adverse
temperature gradient ∆ = (Tb − Tt)/d > 0. We employ
periodic boundary condition for the vertical sideways
walls. However, for the top and bottom plates, we em-
ploy no-slip boundary conditions for the velocity field,
and conducting boundary conditions for the temperature
field [17, 37]. Note that a perfectly conducting plate
maintains constant temperatures throughout its volume.

We assume that the fluid has constant dynamic vis-
cosity µ and thermal conductivity K. We also assume
that the fluid follows ideal gas law, p̃ = ρ̃R∗T̃ , where p̃
is the pressure; ρ̃ is the density of fluid; R∗ = Cp −Cv is
the gas constant; Cp,Cv are the specific heat capacities
at constant pressure and volume respectively; and T̃ is
the temperature field. The following conservative set of
equations govern the system [9, 46]:

∂ρ̃

∂t̃
+
∂

∂x̃i
(ρ̃ũi) = 0, (1)

∂

∂t̃
(ρ̃ũi) +

∂

∂x̃ j
(ρ̃ũiũ j + δi j p̃ − τ̃i j) = −gρ̃δiz, (2)
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Nomenclature

d height of rectangular box
L length and width of rectangular box
g gravitational acceleration
K thermal conductivity
Tb temperature at the bottom plate
Tt temperature at the top plate
Cp specific heat capacity at constant pressure
Cv specific heat capacity at constant volume
R∗ gas constant
r̃ = (x̃, ỹ, z̃) dimensional position vector
r = (x, y, z) nondimensional position vector
ũ dimensional velocity
u nondimensional velocity
t̃ dimensional time
t nondimensional time
T̃ dimensional temperature
T nondimensional temperature
p̃ dimensional pressure
p nondimensional pressure
Ẽ dimensional total energy density
E nondimensional total energy density
T̃A dimensional adiabatic temperature
TA nondimensional adiabatic temperature
p̃A dimensional adiabatic pressure
pA nondimensional adiabatic pressure
T̃sa dimensional superadiabatic temperature
Tsa nondimensional superadiabatic temperature
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
D dissipation number
r = Ke/Ie ratio of kinetic energy and internal energy

H̃T dimensional total heat flux
H̃A dimensional adiabatic heat flux
H̃cond dimensional conductive heat flux
H̃conv dimensional convective heat flux
Nu mean Nusselt number
Nu bulk Nusselt number
Nuconv convective Nusselt number
NuK uz-induced kinetic Nusselt number
Ũ dimensional root-mean square velocity
U nondimensional root-mean square velocity
X column vector containing ρ, ρuα, and E
Fα fluxes in α-direction
Sα sources in α-direction
Lα predictor-corrector operator α-direction
Coα local Courant number in α-direction
C(Ra) correlation between ρuz and Tsa

Greek:
Γ aspect ratio of computational domain
∆ temperature gradient in z-direction
γ ratio of specific heats
µ dynamic viscosity
ν kinematic viscosity
κ thermal diffusivity
ρ̃ dimensional fluid density
ρ nondimensional fluid density
ρ̃A dimensional adiabatic density field
ρA nondimensional adiabatic density field
β adiabatic index
ϵ superadiabaticity
τ̃ττ dimensional stress tensor
τττ nondimensional stress tensor

∂Ẽ
∂t̃
+
∂

∂x̃i

(
ũi(Ẽ + p̃) − K

∂T̃
∂x̃i
− ũ jτ̃i j

)
= 0, (3)

where ũi are the velocity field components; g is the ac-
celeration due to gravity along −ẑ direction;

Ẽ = ρ̃
(

ũ2

2
+CvT̃ + gz̃

)
(4)

is the total energy density; and

τ̃i j = µ

(
∂̃ jũi + ∂̃iũ j +

2
3
∂̃mũmδi j

)
(5)

is the stress tensor. Another important parameter is the
aspect ratio Γ, which is the ratio of the length (L) and

the height (d) of the rectangular box. All tilde variables
have their respective dimensions.

The bulk flow is nearly adiabatic (or isentropic) be-
cause the convection time scale is faster than the con-
duction time scale (estimates in Sec. 4). Therefore,
the vertical profiles of the adiabatic temperature T̃A(z̃),
adiabatic density ρ̃A(z̃), and adiabatic pressure p̃A(z̃)
are [9, 17]

T̃A(z̃) =

(
Tb −

g
Cp

z̃
)
, (6)

ρ̃A(z̃) =
ρb

T βb
(T̃A(z̃))β, (7)

p̃A(z̃) = (Cp −Cv)ρ̃A(z̃)T̃A(z̃), (8)
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where Tb and ρb are respectively the temperature and
fluid density at the bottom plate; and β = 1/(γ − 1)
is the adiabatic index with γ = Cp/Cv. Later in the
paper we will show the bulk temperature nearly follows
the adiabatic profile [Eq. (6)]. The difference between
the real temperature and the adiabatic profile is called
superadiabatic temperature: T̃sa(r̃, t̃) = T̃ (r̃, t̃) − T̃A(z̃).

Compressible convection has several important
nondimensional parameters, which are [17, 36]

superadiabaticity ϵ =
d
Tb

(
∆

d
−

g
Cp

)
, (9)

dissipation number D =
gd

TbCp
=

Tb − T̃A(d)
Tb

,(10)

Rayleigh number Ra =
ϵgd3

νκ
, (11)

Prandtl number Pr =
ν

κ
, (12)

where ν = µ/ρ is the kinematic viscosity, and κ =
K/(Cpρ) is the thermal diffusivity of fluid. The pa-
rameters Ra and Pr are common with RBC, except that
the temperature gradient has an adiabatic correction via
ϵ. The parameters D and ϵ are unique to compress-
ible convection: D represents the nondimensional adi-
abatic temperature drop, whereas ϵ represents the ex-
cess temperature gradient relative to the adiabatic pro-
file [17, 36]. In Fig. 1(A,B), we plot the total temper-
ature gradient and the adiabatic temprature gradient in
dimensional and nondimensional forms respectively.

Tt Tb

d

T (z)A

gd/CP

A

1
T

z

1

T (z)A

D
B

z

T
1 D1 D ε

ε

Figure 1: The adiabatic temperature gradient (blue lines) and the total
temperature gradients (black lines) in (A) dimensional and (B) non-
dimensional forms.

In Sec. 4, we will show that the bulk temperature
nearly follows the adiabatic temperature profile T̃A(z̃),
which is in sharp contrast to RBC where the bulk tem-
perature is constant. Additionally, the density at the
bottom is larger than that at the top, which is opposite
to that in RBC. Therefore, compressible convection ex-
hibits behavior that is markedly different from that of

RBC.
We non-dimensionalize Eqs. (1)-(3) using d as the

length scale, free-fall velocity
√
ϵgd as the velocity

scale, ρb as the density scale, and Tb as the temperature
scale. The governing equations in dimensionless form
are [17, 37]

∂ρ

∂t
+
∂

∂xi
(ρui) = 0, (13)

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j + δi j p − τi j) = −

1
ϵ
ρδiz, (14)

∂E
∂t
+
∂

∂xi

(
ui(E + p) −

1

ϵD
√

RaPr

∂T
∂xi
− u jτi j

)
= 0,

(15)
where the nondimensionalized pressure, total energy
density, and stress tensor are defined respectively as:

p =
(γ − 1)
γϵD

ρT, (16)

E = ρ
(

u2

2
+

1
γϵD

T +
1
ϵ

z
)
, (17)

τi j =

√
Pr
Ra

(
∂ jui + ∂iu j +

2
3
∂mumδi j

)
. (18)

Note that the tilde variables are dimensionful, whereas
those without tilde are dimensionless. The nondimen-
sional adiabatic profiles are [17]

TA(z) = (1 − Dz) , (19)
ρA(z) = (1 − Dz)β, (20)
pA(z) = (1 − Dz)(β+1). (21)

The nondimensional temperature is 1 at the bottom
plate, and 1 − ϵ − D at the top plate (see Fig. 1).

In this paper, we study heat transport as a function
of Ra for a fixed Pr, ϵ, and D. In the RBC framework,
Nu is the ratio of total heat flux (H̃T ) and conductive
heat flux (H̃cond). In compressible convection, the heat
flux due to adiabatic cooling (H̃A) must be subtracted
from both H̃T and H̃cond to compensate the thermody-
namic effects [11, 46, 47]. Here, the total heat flux is
a sum of H̃cond = K∆ (K is the thermal conductivity of
the fluid), convective heat flux H̃conv = Cp⟨ρ̃ũzT̃sa⟩V,t,
and uz-induced kinetic heat flux H̃K = ⟨ρũzũ2/2⟩V,t. The
adiabatic heat flux is given by H̃A = Kg/Cp. Hence, the
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Nusselt number is [46, 47]

Nu =
H̃T − H̃A

H̃cond − H̃A

=
K∆ +Cp⟨ρ̃ũzT̃sa⟩V,t + ⟨ρũzũ2/2⟩V,t − Kg/Cp

K
(
∆ −

g
Cp

)
= 1 +

√
RaPr
ϵ
⟨ρuzTsa⟩V,t +

D
√

RaPr
2

⟨ρuzu2⟩V,t

= 1 + Nuconv + NuK . (22)

We report the volume and temporal averages of the
above quantities and denote them by ⟨.⟩V,t.

The above Nu, called bulk Nusselt number, fluctuates
significantly. In contrast, the Nusselt number computed
near the bottom plate (z = 0) and top plate (z = 1) [17,
37]

Nuz=0,1 = −
1
ϵ

d⟨Tsa⟩A,t

dz

∣∣∣∣∣
z=0,1
, (23)

have much less fluctuations. Here ⟨.⟩A,t represents the
horizontal and temporal averages. Consequently, the
mean Nusselt number at the boundaries is given by

Nu =
Nuz=0 + Nuz=1

2
. (24)

In this paper, we report Nu and Nu, as well as Nuconv
and NuK . In addition to Nu, we also report the Reynolds
number Re, which is defined as [5]

Re =
Ũd
ν
, (25)

where Ũ is the root-mean-square (rms) velocity. After
non-dimensionalization [17],

Re =

√
Ra
Pr

U =

√
Ra
Pr
⟨
√
⟨u2⟩V⟩t. (26)

where U is the dimensionless velocity.
In Sec. 3, we solve Eqs. (13)-(15) numerically.

3. Numerical Method, Validation, and Simulation
Parameters

In this section, we describe our numerical method, its
validation, and the simulation parameters.

3.1. Numerical Method
We solve Eqs. (13)-(15) using MacCormack-TVD

(total variation diminishing) finite-difference scheme on
a collocated grid [40, 41, 42]. We employ a non-uniform
tangent-hyperbolic grid in the z-direction to increase

resolution near the boundaries, and uniform grids along
the x and y directions.

All the equations are written in vectorial notation in
the following conservative form [40]:

∂X
∂t
+

∑
α

∂Fα
∂xα
=

∑
α

Sα, (27)

where α = 1, 2, 3 represent the x, y, and z directions re-
spectively. X is a column vector that contains the vari-
ables ρ, ρuα, and E; Fα and Sα are the respective fluxes
and sources [48]. Hence,

X =


ρ
ρux

ρuy

ρuz

E

 ; S1 =


0
f1
0
0
0

 ; S2 =


0
0
f2
0
0

 ; S3 =


0
0
0
f3
0

 ;

Fα =


ρuα

ρuxuα − τxα

ρuyuα − τyα

ρuzuα − τzα + p
uα(E + p) − K ∂T

∂xα
−

∑
β uβτβα

 . (28)

For natural convection, f1 = 0, f2 = 0, and f3 =
−ρg. Using operator-splitting method, we separate the
Eq. (27) into three one-dimensional equations:

∂X
∂t
+
∂F1

∂x1
= S1,

∂X
∂t
+
∂F2

∂x2
= S2,

∂X
∂t
+
∂F3

∂x3
= S3. (29)

The fields in X are discretized in space, whose value at
the site (i, j, k) is Xi jk. We denote the time step using
superscript (n). The time stepping of Xi jk from (n) to
(n + 1) is [40]

X(n+1)
i jk = Lx

(
δt
2

)
Ly

(
δt
2

)
Lz

(
δt
2

)
×

Lx

(
δt
2

)
Ly

(
δt
2

)
Lz

(
δt
2

)
X(n)

i jk, (30)

where δt is the time-step; and Lα is predictor-corrector
operator in α-direction. The last three terms of Eq. (30)
carry forward X from (n) to (n + 1/2), whereas the first
three terms take from (n+ 1/2) to (n+ 1), each of which
involves several sub-steps.

Along the z-direction (α = 3), a predictor step from
(n) to (n + 1/2) using backward difference is [40]

XP
i jk = X(n)

i jk −
δt
2

F(n)
α,i jk − F(n)

α,i j(k−1)

δxα

 + δt2 S(n)
α,i jk. (31)

After this step, we perform the corrector step [40]

XC
i jk = X(n)

i jk −
δt
2

F(n)
α,i j(k+1) − FP

i jk

δxα

 + δt2 SP
α,i jk. (32)
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We take an average of the above steps and add the TVD
correction term T(n+1/2)

i jk , which yields [40]

X(n+1/2)
i jk =

XP
i jk + XC

i jk

2
+ Tn+1/2

i jk , (33)

where

Tn+1/2
i jk = G(r+i jk + r−i j(k+1)) δX

n
i j(k+1/2) −

G(r+i j(k−1) + r−i jk) δXn
i j(k−1/2), (34)

δXn
i j(k+1/2) = Xn

i j(k+1) − Xn
i jk, (35)

δXn
i j(k−1/2) = Xn

i jk − Xn
i j(k−1), (36)

r±i jk =

(
δXn

i j(k−1/2), δX
n
i j(k+1/2)

)(
δXn

i j(k±1/2), δX
n
i j(k±1/2)

) . (37)

The bracket (A,B) indicates the dot product between A
and B, and

G(x) = 0.5C(1 − ϕ(x)), (38)

where ϕ(x) = max(0,min(2x, 1)) is the minmod flux lim-
iter function, and

C =

Coα(1 − Coα), Coα ≤ 0.5
0.25, Coα > 0.5

(39)

with Coα representing the local Courant number in α-
direction [40, 41]. Identical processes are also adopted
for the x- and y-directions.

The TVD correction preserves monotonicity and pre-
vents spurious oscillations in the solution [41]. The
MacCormack-TVD scheme is second-order accurate in
space and time. For computing the boundary points, we
use second-order forward and backward differences at
the bottom and top plates, respectively.

3.2. Programming Tools

We developed an object-oriented Python solver,
DHARA, for simulating fully compressible equa-
tions on many GPUs and CPUs. The solver em-
ploys CuPy library [49] for GPU acceleration, and
mpi4py [50] for multi-GPU communications. Note
that CuPy provides a GPU-optimized alternative to
NumPy [51]. We enhanced the code performance us-
ing cupy.ElementwiseKernel(), leading to 200X
speedup on NVIDIA A100 GPU in comparison to a
single-core AMD EPYC 7543 processor. For scal-
ing studies, we ran DHARA on 128 nodes (512 A100
GPUs) of Polaris (Argonne National Laboratory) and

on 1024 nodes (8192 AMD MI250X GPUs) of Fron-
tier (Oak Ridge National Laboratory) and demonstrated
near ideal scaling (see Appendix A).

We performed the majority of our convection simu-
lations on Polaris. Some simulations with smaller grids
were performed on the Param Sanganak supercomputer
of IIT Kanpur and on our laboratory clusters.

3.3. Validation

We validate our code by comparing our numerical
Nusselt and Reynolds numbers with those computed by
John and Schumacher [37] and Verhoeven et al. [17].
We compute Nu using Eq. (24). In particular, we sim-
ulate Eqs. (13)-(15) for Ra = 106, ϵ = 0.1, Γ = 4,
γ = 1.4, Pr = 0.7, and D = 0.1, 0.34, 0.5, 0.6. The Nu
and Re computed by our code and those by John and
Schumacher [37] are listed in Table 1. Next, we com-
pute Re and Nu by varying Ra for a fixed D = 0.49,
Γ = 2, γ = 5

3 , ϵ = 0.1, Pr = 0.7, and compare our results
with Verhoeven et al. [17] (see Table 2). Our results
show good agreement with those reported by John and
Schumacher [37] and Verhoeven et al. [17]. Our Nu and
Re differ from the previous works by less than 3%.

t t+ 5
1

1000

2000

N
u

A

16385× 8193 24001× 12001

t t+ 5

t

80

100

120

N
u

B

9012 × 451 12012 × 601

Figure 2: For ϵ = 0.1,D = 0.5, γ = 1.3,Γ = 4, and Pr = 0.7, the
time series of Nu computed using Eq. (24) for (A) 2D convection at
Ra = 1015 on grids 16385 × 8193 (red) and 24001 × 12001 (blue),
and for (B) 3D convection at Ra = 1011 on grids 9012 × 451 (red) and
12012 × 601 (blue).
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Table 1: Comparison between our Nu and Re and those of John and Schumacher [37] for Ra = 106, Pr = 0.7, Γ = 4, γ = 1.4, ϵ = 0.1, and various
D’s.

Case D Nu [37] Nu (our simulations) ErrorNu (in %) Re [37] Re (our simulations) ErrorRe (in %)
1 0.1 7.94 7.90 ± 0.06 0.7 424 425 ± 3 0.7
2 0.34 7.64 7.67 ± 0.08 1.0 414 414 ± 4 0.9
3 0.5 6.93 6.89 ± 0.05 0.7 407 406 ± 3 0.7
4 0.6 6.24 6.18 ± 0.09 1.4 370 368 ± 5 1.3

Table 2: Comparison between our Nu and Re and those of Verhoeven et al. [17] for D = 0.49, ϵ = 0.1, Pr = 0.7, Γ = 2, γ = 5
3 , and various Ra’s.

Case Ra Nu [17] Nu (our simulations) ErrorNu (in %) Re [17] Re (our simulations) ErrorRe (in %)
1 104 2.1 2.175 ± 0.005 0.2 26.3 26.98 ± 0.05 0.2
2 105 3.9 4.0 ± 0.1 2.5 102 100 ± 3 3.3
3 106 7.1 7.3 ± 0.2 2.7 322 330 ± 7 2.0
4 107 13.4 14.1 ± 0.4 2.8 973 970 ± 20 2.4

We also perform grid independence test by com-
paring Nu for 2D convection at Ra = 1015 on grids
16385 × 8193 and 24001 × 12001, and for 3D convec-
tion at Ra = 1011 on grids 9012 × 451 and 12012 × 601.
We compute Nu for the steady states using Eq. (24) and
plot the time series in Fig. 2(A, B) for 2D and 3D, re-
spectively. The respective Nu for 2D at Ra = 1015 are
1218 and 1204, and for 3D at Ra = 1011 are 103 and
104, which are within 1% of each other. The near simi-
larity of Nu time series and their averages indicate that
our results are grid independent, as long as the flow is
well resolved.

3.4. Simulation Parameters
We simulate Eqs. (13)-(15) in 2D and 3D using the

numerical scheme described in Sec. 3.1. For the hori-
zontal plates, we employ no-slip boundary condition for
the velocity field and conducting boundary condition for
the temperature field. The fields at the side walls satisfy
periodic boundary condition.

For our simulations, we fix Γ = 4, γ = 1.3, ϵ = 0.1,
D = 0.5, Pr = 0.7 and vary Ra. The Rayleigh number
Ra ranges from 109 to 1015 for 2D, and from 108 to 1011

for 3D. In Table 3, we list the grid sizes, Ra, Nu, Re,
number of points in the top and bottom boundary layers
(NBL

t and NBL
b respectively), and thicknesses of the top

and bottom boundary layers (λt and λb respectively).
We compute Nu and Re using Eqs. (24, 26) respec-

tively. However, Nu and Re exhibit significant fluctua-
tions, hence we average them over 50 time units in the
steady state, except that we average over 30 and 20 time
units for Ra = 1014 and 1015 respectively. We list these
values in Table 3. Note that Nu has around 10% errors
for the 2D runs, but has maximum of 4% error for the

3D runs. The errors in Re range from 1% to 15% for 2D
flows, and from 0.5% to 2% for 3D flows.

The highest grid resolutions are 16385×8193 for 2D,
and 9012 × 451 for 3D. For all our runs, the number
of grid points in the boundary layers exceeds 5, hence
they satisfy the Grötzbach resolution criteria [27, 52, 53,
54]. These observations indicate that our simulations
are well resolved. For faster execution, we employ a
single or mulitple GPUs: a single GPU for Runs 1-5
and 8; and 4 GPUs for Runs 6, 7 and 9-11 of Table 3.
Our largest 3D run with 9012 ×451 grid required 7 days
to complete on a Polaris node with four NVIDIA A100
GPUs.

In the following three sections, we will discuss var-
ious properties of compressible convection. We start
with adiabatic profile and flow structures of the flow.

4. Adiabatic Profile and Flow Structures

According to Schwarzschild criterion, at the onset of
convection, the temperature in compressible convection
decreases vertically with the rate g/Cp, which is the adi-
abatic temperature profile [55]. This result is derived
using equilibrium thermodynamics. Interestingly, the
atmospheres of the Earth and Sun too exhibit adiabatic
temperature drop even though these systems are turbu-
lent [6]. As we show below, we observe adiabatic cool-
ing in our high Ra simulations, consistent with solar and
Earth convection.
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Table 3: For our 2D convection Runs 1 to 7, and 3D Runs 8 to 11: the Rayleigh number Ra, the grid size, the Reynolds number Re, the mean
Nusselt number Nu, the number of grid points in the top and bottom boundary layers (NBL

t , NBL
b ), and the thicknesses of top and bottom thermal

boundary layers (λt , λb). Also, the polytropic index γ = 1.3, Prandtl number Pr = 0.7, dissipation number D = 0.5, superadiabaticity ϵ = 0.1, and
the aspect ratio Γ = 4.

Run Ra Grid Size Re Nu NBL
t NBL

b λt λb

1 109 3001 × 1501 (1.35 ± 0.01) × 104 22 ± 3 133 34 0.055 0.013
2 1010 5001 × 2501 (4.23 ± 0.01) × 104 42 ± 5 180 54 0.036 0.010
3 1011 5601 × 2801 (1.28 ± 0.03) × 105 90 ± 10 120 38 0.020 0.0062
4 1012 6001 × 3001 (4.04 ± 0.07) × 105 180 ± 20 95 32 0.015 0.0047
5 1013 8193 × 4097 (1.3 ± 0.1) × 106 360 ± 50 70 23 0.010 0.0031
6 1014 12001 × 6001 (4.0 ± 0.2) × 106 570 ± 70 72 21 0.0066 0.002
7 1015 16385 × 8193 (1.3 ± 0.2) × 107 1200 ± 200 62 18 0.0042 0.0012
8 108 5132 × 257 (2.21 ± 0.01) × 103 14.0 ± 0.2 35 12 0.076 0.0226
9 109 8012 × 401 (6.86 ± 0.02) × 103 28.6 ± 0.5 32 11 0.047 0.0158
10 1010 8012 × 401 (2.03 ± 0.04) × 104 53.9 ± 0.5 20 7 0.028 0.010
11 1011 9012 × 451 (5.86 ± 0.08) × 104 103 ± 4 13 5 0.017 0.0061
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Figure 3: Profiles of horizontally and temporally averaged ⟨T ⟩A,t(z)
for (A) 2D convection for Ra = 109 (blue), Ra = 1012 (red), and Ra =
1015 (green); and (B) 3D convection for Ra = 109 (blue), Ra = 1010

(red), and Ra = 1011 (green). The black dashed line represents the
adiabatic temperature (TA(z)).
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Figure 4: For 2D compressible convection with (A) Ra = 109, (B)
1012, and (C) 1015, the density plots of the ratio of fluid kinetic energy
and internal energy, r = (ρu2/2)/(ρCvT ).

We compute horizontally and temporally averaged
temperature ⟨T ⟩A,t (z) for 2D and 3D runs. For a 2D
flow, we average T along the horizontal axis and over
time during a steady state. In 3D, the corresponding
averaging is performed over horizontal planes and over
time. In Fig. 3(A, B), we plot ⟨T ⟩A,t (z) for the 2D and
3D flows respectively. Interestingly, dT (z)/dz = −g/Cp

in the bulk, thus verifying adiabatic cooling. The reason
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for this observation is as follows.

We compute the ratio of the fluid kinetic energy and
internal energy, r = Ke/Ie = (ρu2/2)/(ρCvT ), at every
grid point. For 2D simulation with Ra = 109, 1012, 1015,
Fig. 4 illustrates the density plot of r. Figure 5 illustrates
the probability distribution function of r for 2D and 3D
convection. As shown in the figures, r → 0, implying
that the internal energy dominates the fluid kinetic en-
ergy, or u ≪ cs (cs is the sound speed). The local Mach
number of the flow is predominantly very small, but it
reaches a maximum value of 0.9 at some isolated loca-
tions. The time average of maximum turbulent Mach
number for all Ra’s vary from 0.5 to 0.6. This feature
implies that the system is near thermodynamic equilib-
rium in the bulk. This is the reason why compress-
ible convection exhibits adiabaticity in the bulk even for
large Ra’s [6, 12]. These results are consistent with the
fact that the convective time scale, tconv =

√
d/(ϵg), is

smaller than conductive time scale, tcond = d2/κ. Their
ratio tconv/tcond = 1/

√
RaPr ≪ 1. Note, however, that

the Schwarzschild criterion does hold in the boundary
layers, where the flow is dynamic.

Figure 5: Normalized probability distribution function (PDF) of the
ratio of the kinetic energy density, Ke = ρu2/2, and the internal en-
ergy density, Ie = ρCvT for (A) 2D and (B) 3D convection during
respective steady states. Color convention is the same as Fig. 3.

Next, we discuss the flow structures of compress-
ible convection. Since the temperature is dominated by
TA(z), we subtract it from the total temperature and plot
the superadiabatic temperature Tsa(r) = T (r) − TA(z),
along with the vector plots of the velocity field. These
plots are illustrated in Figs. 6 and 7 for 2D and 3D flows
respectively. For movies, refer to [56]. The figures and
movies exhibit flow activities at the bottom and the top
of the box, where the thermal plumes are generated.
Note, however, that the flow velocity of the plumes is
much smaller than the sound speed.
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Figure 6: Plots of the velocity field u and superadiabatic temperature
Tsa(r) for 2D convection with (A) Ra = 109, (B) Ra = 1012, and
(C) Ra = 1015. (D) The magnified view near the top boundary for
Ra = 1015.
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Figure 7: Plots of superadiabatic temperature Tsa(r) for 3D convection
at (A) Ra = 109 and (B) Ra = 1011.
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As shown in Fig. 3, the bulk temperature is nearly
adiabatic, in contrast to the constant bulk temperature in
RBC. Interestingly, Tsa ≪ TA (see Figs. 6 and 7) indi-
cating the dominance of TA. As shown in Figs. 6 and 7),
turbulent convection is more prominent near the bottom
than the top, consistent with earlier findings [37, 57].
As argued by John and Schumacher [37], and Wu and
Libchaber [57], the fluid is denser at the bottom than
the top. Hence, using µ = νρ = const., we deduce that ν
and κ at the bottom are smaller than those at the top.
Therefore, the bottom region has stronger turbulence
with relatively thin and easily-detachable plumes than
the top region [36, 57]. In the following, we discuss
these boundary layer features.

5. Boundary Layers of Compressible Convection

The planar-averaged temperature ⟨T ⟩A,t (z), exhib-
ited in Fig. 3, shows that the temperature drops rather
sharply at the top and bottom boundary layers. In Figs. 8
and 9, we plot the zoomed-view of the 2D and 3D
boundary layers.
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0
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B

Figure 8: Boundary layers in 2D convection: The horizontally and
temporally averaged ⟨T ⟩A,t(z) in the (A) top boundary layer and (B)
bottom boundary layer. Color convention is the same as Fig. 3.

Unlike RBC, in compressible convection, the top
boundary layer is thicker than the bottom one. At the

bottom boundary layers of the 2D flows, the nondimen-
sional temperature drops from 1 to 0.96 (approximately)
as z increases from 0 to 0.02. However, at the top bound-
ary layer, the temperature drops more rapidly—from 0.5
to 0.4 as z varies from 0.96 to 1. A similar tempera-
ture drop is observed in 3D flows, albeit at low Ra’s.
These abrupt temperature drops at the top are due to
higher κ at the top than the bottom because of the den-
sity profile [37, 57]. Also note that at the top boundary
layer, the rate of temperature drop increases with Ra.
The above results are consistent with those of John and
Schumacher [36, 37].
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Figure 9: Boundary layers in 3D convection: ⟨T ⟩A,t (z) in the (A) top
boundary layer and (B) bottom boundary layer. Color convention is
the same as Fig. 3.

We compute the thicknesses of the top and bot-
tom boundary layers. For the same, we identify z =
λt,b where the slope of ⟨T ⟩A,t approximates the adia-
batic temperature gradient −D near the top and bot-
tom boundaries, respectively. The variation of λt,b as
a function of Ra is plotted in Fig. 10(A, B) for 2D and
3D flows. The red squares and blue circles represent
the bottom and top boundary layers, respectively. It is
evident that the top boundary layer is wider than the
bottom boundary layer, and that the thickness of both
boundary layers decrease with the increase of Ra. Inter-
estingly, the boundary layer thickness follows a power
law with Ra: λt = (2.4 ± 0.4)Ra(−0.184±0.005), λb =
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Figure 10: Plots of thermal boundary layer thicknesses λt,b vs. Ra
for (A) 2D and (B) 3D flows. The blue and red symbols depict the
thicknesses of the top and bottom boundary layers for various Ra’s.

(0.5 ± 0.1)Ra(−0.172±0.006) for 2D, and λt = (4.2 ±
0.2)Ra(−0.218±0.003), λb = (0.8 ± 0.2)Ra−0.19±0.01 for 3D.
Note that the prefactor of λt is larger than that of λb be-
cause the top boundary layer is thicker than the bottom
one. In contrast, the top and bottom boundary layers
in RBC scale identically, e.g., λt ∼ λb ∼ Ra−0.30 for
Pr = 1 [58]. Thus, boundary layers of RBC and com-
pressible convection behave very differently.

In Fig. 11 we plot the temporal and planar aver-
aged superadiabatic temperature Tsa(z) = T (z) − TA(z),
ρ − ρA(z), and rms velocity U(z). We observe that in
the bulk, Tsa(z) ≈ 0 for both 2D and 3D because the
bulk temperature nearly follows adiabatic profile (see
Fig. 11(A, B)). The additional temperature gradients,
dTsa(z)dz, near the top and bottom boundary layers drive
the flow. As shown in Fig. 11(A, B), Tsa(z) nearly col-
lapses over each other, apart from some fluctuations. As
described earlier in this section, Tsa(z) drop is greater at
the top than the bottom.

Figures 11(C, D) illustrate that the density is closer
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Figure 11: The planar and temporal averaged Tsa(z) = T (z) − TA(z)
(A,B), ρ − ρA(z) (C,D), and rms velocity U(z) (E,F). The left column
represents 2D flows, whereas the right column represents 3D flows.
The black dashed lines in (C, D) denote adiabatic profile. Color con-
vention is the same as Fig. 3.

to the adiabatic profile in the upper box than in the
lower box. The density variations from the adiabatic
profile are greater near the bottom boundary than the top
one. Note that the deviation from adibaticity for density
(ρ − ρA(z)) increases with Ra, both for 2D and 3D. Fig-
ures 11(E, F) illustrate ⟨U(z)⟩t arising due to the turbu-
lent activities. Note that ⟨U(z)⟩t decreases with increase
in Ra for both 2D and 3D flows. Also, for 2D convec-
tion, ⟨U(z)⟩t at the bottom is larger than that near the
top. However, it is nearly reversed in 3D. Thus, ⟨U(z)⟩t
exhibits asymmetry around the mid-plane, which is un-
like nearly symmetric ⟨U(z)⟩t in RBC [59].

In the next section, we will discuss Nu and Re scaling
for turbulent compressible convection.
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6. Nu and Re Scaling for Compressible Convection

In this section, we compute the global measures, Re
and Nu, for 2D and 3D compressible convection.

6.1. Re Scaling

10−8

10−5

10−2

101

N
S

T
er

m
s A

109 1011 1013 1015

Ra

104

105

106

107

R
e

B

0.45Ra0.497

Figure 12: For 2D convection, along the z direction of the momentum
equation: (A) the volume averaged ⟨Fp⟩ (red unfilled circles), ⟨Fb⟩

(blue dots), ⟨Fn⟩ (teal unfilled squares), ⟨Fv⟩ (magenta unfilled trian-
gles), and ⟨Fb⟩ − ⟨Fp⟩ (black pentagons); (B) the Re scaling, which is
Re ∼ Ra0.497.

We analyze the relative strengths of various terms of
the momentum equation along ẑ [Eq. (2)]. The different
terms of the equation along ẑ are

Nonlinear term : Fn = ρ(u · ∇∇∇)uz, (40)

Pressure gradient : Fp = −
∂p
∂z
, (41)

Buoyancy : Fb = ρg, (42)

Viscous force : Fv = ∂iτiz. (43)

We compute the volume averages of the above four
terms, along with ⟨Fb⟩ − ⟨Fp⟩. These quantities are plot-
ted in Figs. (12A, 13A) for 2D and 3D flows respec-
tively. The plots clearly show that

⟨Fp⟩ ≈ ⟨Fb⟩. (44)

10−5

10−2

101

N
S

T
er

m
s A

108 109 1010 1011

Ra

103

104

105

R
e

B

0.36Ra0.474

Figure 13: For 3D convection, along the z direction of the momentum
equation: (A) the volume averaged ⟨Fp⟩ (red unfilled circles), ⟨Fb⟩

(blue dots), ⟨Fn⟩ (teal unfilled squares), ⟨Fv⟩ (magenta unfilled trian-
gles), and ⟨Fb⟩ − ⟨Fp⟩ (black pentagons); (B) the Re scaling, which is
Re ∼ Ra0.474.

This balance is a key feature of Schwarzschild crite-
rion [55] (see Sec. 4). Interestingly, Eq. (44) is satisfied
for larger Ra’s as well. This is the reason why bulk flow
of compressible convection is nearly adiabatic for high
Ra’s as well.

It turns out that ⟨Fp⟩ and ⟨Fb⟩ do not cancel precisely,
and the difference between the two terms nearly equals
the nonlinear term, i.e.,

⟨Fn⟩ ≈ ⟨Fb⟩ − ⟨Fp⟩. (45)

The viscous term, which is ⪅ 10−5 for all Ra’s, is much
less than the other three terms. Using Eq. (45) we derive
that

ρ̃Ũ2

d
∼ ϵρ̃g, (46)

where ϵ is superadiabaticity, a small constant. Using
Eq. (11) and (12), we derive that

Re =
Ũd
ν
≈

√
Ra
Pr
. (47)

Therefore, Re ∝ Ra1/2. We remark that the momen-
tum equation of RBC exhibits a different balance among
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various terms, with significant weight for the nonlin-
ear term [5, 60]. Consequently, the Re scaling for
the two systems are somewhat different. The relation
Re ∝ Ra1/2 remains the dominant scaling for RBC as
well [18], but the exponent correction may reach 0.05
for large Ra’s [5, 18].

Using the 2D and 3D numerical data, we compute Re
for various Ra’s in the respective steady states, and list
them in Table 3 (see Sec. 3.4). The listed Re’s have
errors ranging from 1% to 15% for the 2D flows, and
from 0.5% to 2% for the 3D flows. We exhibit the Re
vs. Ra plots for the 2D and 3D flows in Figs. (12B, 13B).
We observe that Re = (0.45 ± 0.02)Ra(0.497±0.002) for
2D, and Re = (0.36 ± 0.04)Ra(0.474±0.005) for 3D. These
numerical results are consistent with the prediction that
Re ∝ Ra1/2.

6.2. Nu Scaling

Here, we discuss the Nu scaling. We compute
the volume- and time-averaged Nu, convection-induced
Nuconv, and uz-induced NuK using Eq. (22), as well as
boundary-layer Nu using Eq. (24) for 2D and 3D runs.
We employ a moving average over 10 free-fall times.
The bulk Nu’s, the first three quantities of the above,
are listed in Table 4, whereas Nu is listed in Table 3.
Note that Nu, averaged over nearly 50 time units, has a
maximum of 17% error for the 2D runs, but a maximum
of 4% errors for the 3D runs (see Table 3 and Sec. 3.4).

Table 4: The volume- and time-averaged (over 10 free-fall times) Nu,
Nuconv and NuK of Eq. (22) for 2D and 3D runs. These quantities have
significant fluctuations, especially in 2D convection. NuK is relatively
small with large fluctuations. In the table, we do not report NuK for
runs 2 to 5 because of large fluctuations.

Run Ra Nu Nuconv NuK

1 109 21 ± 2 28 ± 2 −6 ± 2
2 1010 39 ± 7 52 ± 4 -
3 1011 80 ± 23 114 ± 8 -
4 1012 160 ± 50 250 ± 30 -
5 1013 300 ± 150 500 ± 100 -
6 108 13.9 ± 0.4 16.1 ± 0.5 −1.9 ± 0.7
9 109 27 ± 2 32 ± 2 −4 ± 1
7 1010 55 ± 2 64 ± 3 −9 ± 1
8 1011 110 ± 14 130 ± 15 −18 ± 2

The bulk Nu fluctuates significantly for 2D convec-
tion [61], hence we time average them over approxi-
mately 10 time units. The total Nu’s have large errors,
especially for large Ra’s. We exclude the bulk Nu’s for
2D at Ra = 1014 and Ra = 1015 as they exhibit more
than 100% error. The errors in Nu for the 2D flows
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Figure 14: Nu Scaling for (A) 2D and (B) 3D convection. The figure
exhibits Nuconv, NuK , Nu, and Nu [see Eqs. (22, 24)]. Note that Nu
follows near classical scaling in both 2D and 3D.

range from 10% up to 50%, but they are within 10%
for the 3D flows. We observe that Nuconv has similar
errors as Nu, but NuK has relatively large errors for 2D
convection. We do not list NuK for Runs 2 to 5 due to
large errors. Fortunately, NuK ≪ Nuconv, hence we can
ignore NuK safely.

In Figs. 14(A, B), we plot the averaged Nu, Nuconv,
and Nu for 2D and 3D flows. We also plot NuK for
3D flows. Interestingly, Nu ≈ Nu, but Nu has much
larger fluctuations than Nu. Also, NuK ≪ Nuconv
up to Ra = 1013. Hence, in Eq. (22), the maximal
contribution to Nu comes from Nuconv. The fluid is
denser at the bottom than near the top, which leads
to ρuzu2 being more negative than positive. Hence,
NuK ∼ ⟨ρuzu2⟩ < 0 in compressible convection. This
is unlike RBC where uz is symmetric around the mid-
plane, leading to ⟨ρuzu2⟩ = 0 [1, 2].

Quantitatively, Nuconv = (0.036±0.007)Ra(0.318±0.007)

for 2D convection, and (0.061 ± 0.002)Ra(0.302±0.002)

for 3D convection. The volume-averaged Nu scales
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as (0.050 ± 0.005)Ra(0.292±0.004) for 2D, and (0.054 ±
0.003)Ra(0.300±0.003) for 3D. We observe that Nu follows
a similar scaling as Nu. Thus, turbulent convection fol-
lows classical scaling, rather than ultimate-regime scal-
ing.
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Figure 15: Plots of correlation C(Ra) [Eq. (49)] for (A) 2D and (B)
3D convection. These correlations bring down the Nu scaling from
1/2 to near 0.3.

The above results lead to [see Eq. (22)]

Nu ≈ Nuconv ≈
〈
ρ̃ũzT̃sa

〉
≈ C(Ra)

√〈
(ρ̃ũz)2〉 〈T̃ 2

sa

〉
,

(48)
where

C(Ra) =

〈
ρ̃ũzT̃sa

〉
√〈

(ρ̃ũz)2〉 〈T̃ 2
sa

〉 (49)

is the normalized correlation between ρ̃ũz and T̃sa. Note

that
√〈

(ρ̃ũz)2〉 〈T̃ 2
sa

〉
∼ U ∼

√
RaPr. The correla-

tion C(Ra) plotted in Fig. 15 reveals that C(Ra) =
(40 ± 10)Ra(−0.19±0.01) for 2D, and C(Ra) = (200 ±
100)Ra(−0.20±0.03) for 3D. Hence, C(Ra) corrects the Nu
exponent from 1/2 to near 0.3. This feature is similar to
those observed by Verma et al. [62] for RBC. However,
the component NuK present in compressible convection,
which is negative, further suppresses the Nu exponent to
0.29 in 2D and 0.3 in 3D.

Even though the dynamics of RBC and compressible
convection are significantly different, the classical Re
and Nu scaling are very similar. This feature is possi-
bly due to similar C(Ra) scaling in both the systems, an
issue that needs a closer examination.

7. Summary

In this paper, we present simulation results of com-
pressible convection for very high Ra’s. We simulated
2D and 3D convective flows for Pr = 0.7, superadi-
abaticity parameter ϵ = 0.1, and dissipation number
D = 0.5. We choose Ra’s in the range of 109 to 1015

in 2D, but Ra = 108, 109, 1010 and 1011 in 3D. The
main results reported in the paper are as follows:

1. For all our runs, the pressure gradient nearly
matches with the buoyancy, thus satisfying the
adiabaticity condition or Schwarzschild criterion,
even for very large Ra. The density too is nearly
adiabatic with the fluid density decreasing with
height. We show that the adiabaticity arises be-
cause the internal energy is much stronger than the
fluid kinetic energy. Hence, the flow is in quasi
thermodynamic equilibrium, except near the bot-
tom and top plates where the temperature gradients
exceed g/CP.

2. Unlike RBC, the flow and the boundary layers of
compressible convection are asymmetric along the
vertical. For example, the top boundary layer is
thicker than the bottom boundary. With the in-
crease in Ra, the thicknesses of both the thermal
boundary layers decrease with Ra as ∼ Ra−0.178 in
2D and as ∼ Ra−0.2 in 3D.

3. For high Ra’s, the pressure gradient and buoy-
ancy do not cancel each other exactly. The dif-
ference between the two terms nearly equals the
nonlinear term. Using this feature, we derive that
Re ∼ Ra1/2. Our numerical results nearly follow
the above scaling.

4. We show that the Nusselt number for compressible
convection exhibits near classical scaling (Ra0.30)
up to Ra = 1015 in 2D and up to 1011 in 3D. Note
that for RBC, several researchers [30, 27] have re-
ported a gradual transition to the ultimate regime,
which appears to be absent in compressible con-
vection, at least up to Ra = 1015 for 2D convection.

5. Many features of compressible convection deviate
from RBC, where the temperature and the density
in the bulk are nearly constant. Despite these dif-
ferences, the Re and Nu scaling for compressible
convection and RBC are quite similar.
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Our results on compressible convection are of major
importance to the atmospheres of the Earth and the Sun,
both of which exhibit near adiabatic temperature profile
while being turbulent. We plan to perform somewhat
realistic simulations of the Earth and the Sun in near fu-
ture; the latter simulation would require higher Rayleigh
numbers (1022 to 1024) and inclusion of the magnetic
field. These studies would provide us valuable insights
into the energetics, heat transport, and magnetic field
dynamics in the Sun.
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Appendix A. Scalability of DHARA

We performed scaling analysis of DHARA (finite-
difference solver) on Frontier of Oak Ridge National
Laboratory (OLCF) and on Polaris of Argonne Lead-
ership Computing Facility (ALCF). Each node of Fron-
tier contains four AMD MI250X, each with 2 Graphics
Compute Dies (GCDs), whereas each node of Polaris
contains four NVIDIA A100 GPUs. On Frontier, we
vary grids from 20483 to 163842×2048 and nodes from
8 to 1024. On Polaris, the corresponding grids were var-
ied from 10243 to 40963, and the nodes from 2 to 128.

Figure A.16(A, B) illustrate the time taken for a
timestep as a function of number of nodes on Frontier
and Polaris respectively. The reported time is averaged
over several timesteps. We observe that the time taken
T ∝ n−1, where n is the number of nodes, thus indicat-
ing strong scaling for DHARA in both systems. In ad-
dition, DHARA shows good weak scaling because the
time taken remains unchanged when the grid size and
number of nodes are increased proportionally.
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[29] X. Chavanne, F. Chillà, B. Chabaud, B. Castaing, and B. Hebral,
“Turbulent Rayleigh-Bénard convection in gaseous and liquid
He,” Phys. Fluids, vol. 13, pp. 1300–1320, May 2001.

[30] X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, and
G. Ahlers, “Transition to the Ultimate State of Turbulent
Rayleigh-Bénard Convection,” Phys. Rev. Lett., vol. 108,
p. 024502, Jan. 2012.

[31] X. Zhu, V. Mathai, R. J. A. M. Stevens, R. Verzicco,
and D. Lohse, “Transition to the Ultimate Regime in Two-
Dimensional Rayleigh-Bénard Convection,” Phys. Rev. Lett.,
vol. 120, p. 144502, Apr. 2018.

[32] J. J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly,

“Turbulent convection at very high Rayleigh numbers,” Nature,
vol. 404, pp. 837–840, Jan. 2000.

[33] P. Urban, P. Hanzelka, T. Kralik, V. Musilová, A. Srnka, and
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